Earlier this week, I had a need for a recursive list, that is, a list defined in terms of itself. I think, "back in the day" implementing a data structure of that sort would have been a snap for the everyday C programmer. Today, in this modern C++ world I found myself struggling a little and came to think that maybe the old ways are fading :)
For motivation, here's a couple of examples of the sort of thing I'm talking about.
(1) The list [0; 1; 0; 1; 0; 1; ...]
is a list with a cycle in it. In OCaml you'd write that as let rec l = 0 :: 1 :: l
.
(2) An interpreter using the technique of environments and closures can require an environment ((string * value) list
) to contain a closure where the closure contains the environment. In OCaml you'd write let rec vars = (tag, V_closure (vars, xpr)) :: !env; env := vars
.
Of course with pointers, it's not hard to implement recursive structures in C++. The trouble is having to concern yourself with their memory management due to the absence of garbage collection.
Alright, here is what I came up with. The code is pretty short.
#include <boost/variant.hpp>
#include <memory>
#include <stdexcept>
template <class T> struct node;
template <class T> using node_ptr=typename node<T>::node_ptr;
template <class T> using node_weak_ptr=typename node<T>::weak_ptr;
template <class T> using node_shared_ptr=typename node<T>::shared_ptr;
template <class T> struct ptr_t;
template <class T> using list=ptr_t<node<T>>;
template <class T> using list_ref=node_weak_ptr<T>;
template <class T> list<T> nil ();
template <class T> bool empty (list<T> l);
template <class T> list<T> cons (T val, list<T> l);
template <class T> T& hd (list<T> l);
template <class T> list<T>& tl (list<T> l);
template <class T> list_ref<T> ref (list<T> src);
template <class T> bool is_ref (list<T> src);
The idea behind the implementation is generalize a pointer to node as a union with two variants, a shared pointer or a weak pointer.
template <class T> struct ptr_t :
boost::variant <std::shared_ptr<T>, std::weak_ptr<T>> {
typedef boost::variant <std::shared_ptr<T>, std::weak_ptr<T>> base;
ptr_t () {}
ptr_t (std::weak_ptr<T> p) : base (p) {}
ptr_t (std::shared_ptr<T> p) : base (p) {}
};
template <class T>
struct node {
typedef ptr_t<node> node_ptr;
typedef std::weak_ptr<node> weak_ptr;
typedef std::shared_ptr<node> shared_ptr;
T data;
node_ptr next;
};
This little bit of implementation detail comes up a couple of times so it's handy to factor it out.
namespace {
//'get' at the raw pointer in the union of a smart/weak pointer
template <class T>
T* get (ptr_t<T> l) {
if (std::shared_ptr<T>* p=
boost::get<std::shared_ptr<T>>(&l)) {
return p->get ();
}
return boost::get<std::weak_ptr<T>>(l).lock ().get ();
}
}//namespace<anonymous>
The rest of the implementation is basically a set of "one-liners".
template <class T> list<T> nil (){
return node_shared_ptr<T> ();
}
template <class T> bool empty (list<T> l) {
return (get (l)) == nullptr;
}
template <class T> list<T> cons (T val, list<T> l) {
return node_shared_ptr<T> (new node<T>{val, l});
}
template <class T> T& hd (list<T> l) {
if (empty (l))
throw std::runtime_error ("hd");
return get (l) -> data;
}
template <class T> list<T>& tl (list<T> l) {
if (empty (l))
throw std::runtime_error ("tl");
return get (l) -> next;
}
template <class T> bool is_ref (list<T> src) {
return boost::get<list_ref<T>>(&src)!=nullptr;
}
template <class T> node_weak_ptr<T> ref (list<T> src) {
return node_weak_ptr<T>(boost::get<node_shared_ptr<T>>(src));
}
OK, well, that's about it. Let's see, regarding usage, (1) could be expressed like this
list<int> l = cons (0, cons (1, nil<int> ())); tl (tl (l)) = ref (l);
or, if we assume the existence of a 'last' function with an obvious definition, could be tidied up to read
list<int> l = cons (0, cons (1, nil<int> ())); tl (last (l)) = ref (l);
and (2) can be stated like this
typedef std::pair<std::string, value_t> p_t;
list<p_t> vars = node_shared_ptr<p_t>(new node<p_t>);
hd (vars) = std::make_pair (tag, V_closure {ref (vars), xpr});
tl (vars) = *env;
*env = vars;