Shortest Path
This article assumes familiarity with Dijkstra's shortest path algorithm. For a refresher, see [1]. The code assumes open Core
is in effect and is online here.
The first part of the program organizes our thoughts about what we are setting out to compute. The signature summarizes the notion (for our purposes) of a graph definition in modular form. A module implementing this signature defines a type vertex_t
for vertices, a type t
for graphs and type extern_t
: a representation of a t
for interaction between an implemening module and its "outside world".
module type Graph_sig = sig
type vertex_t [@@deriving sexp]
type t [@@deriving sexp]
type extern_t
type load_error = [ `Duplicate_vertex of vertex_t ] [@@deriving sexp]
exception Load_error of load_error [@@deriving sexp]
val of_adjacency : extern_t -> [ `Ok of t | `Load_error of load_error ]
val to_adjacency : t -> extern_t
module Dijkstra : sig
type state
type error = [
| `Relax of vertex_t
] [@@deriving sexp]
exception Error of error [@@deriving sexp]
val dijkstra : vertex_t -> t -> [ `Ok of state | `Error of error ]
val d : state -> (vertex_t * float) list
val shortest_paths : state -> (vertex_t * vertex_t list) list
end
end
A realization of
Graph_sig
provides "conversion" functions
of_adjacency
/
to_adjacency
between the types
extern_t
and
t
and nests a module
Dijkstra
. The signature of the sub-module
Dijkstra
requires concrete modules provide a type
state
and an implementation of Dijkstra's algorithm in terms of the function signature
val dijkstra : vertex_t -> t -> [ `Ok of state | `Error of error ]
.
For reusability, the strategy for implementing graphs will be generic programming via functors over modules implementing s vertex type.
An implementation of the module type GRAPH
defines a module type VERT
which is required to provide a comparable type t
. It further defines a module type S
that is exactly module type Graph_sig
above. Lastly, modules of type GRAPH
provide a functor Make
that maps any module of type VERT
to new module of type S
fixing extern_t
to an adjacency list representation in terms of the native OCaml type 'a list
and float
to represent weights on edges.
module type GRAPH = sig
module type VERT = sig
type t[@@deriving sexp]
include Comparable.S with type t := t
end
module type S = sig
include Graph_sig
end
module Make : functor (V : VERT) ->
S with type vertex_t = V.t
and type extern_t = (V.t * (V.t * float) list) list
end
The two module types
Graph_sig
and
GRAPH
together provide the specification for the program.
module Graph
in the next section implements this specification.
Implementation of module Graph
is in outline this.
module Graph : GRAPH = struct
module type VERT = sig
type t[@@deriving sexp]
include Comparable.S with type t := t
end
module type S = sig
include Graph_sig
end
module Make : functor (V : VERT) ->
S with type vertex_t = V.t
and type extern_t = (V.t * (V.t * float) list) list
=
functor (V : VERT) -> struct
...
end
end
As per the requirements of
GRAPH
the module types
VERT
and
S
are provided as is the functor
Make
. It is the code that is ellided by the
...
above in the definition of
Make
that is now the focus.
Modules produced by applications of Make
satisfy S
. This requires suitable definitions of types vertext_t
, t
and extern_t
. The modules Map
and Set
are available due to modules of type VERT
being comparable in their type t
.
module Map = V.Map
module Set = V.Set
type vertex_t = V.t [@@deriving sexp]
type t = (vertex_t * float) list Map.t [@@deriving sexp]
type extern_t = (vertex_t * (vertex_t * float) list) list
type load_error = [ `Duplicate_vertex of vertex_t ] [@@deriving sexp]
exception Load_error of load_error [@@deriving sexp]
While the external representation extern_t
of graphs is chosen to be an adjacency list representation in terms of association lists, the internal representation t
is a vertex map of adjacency lists providing logarithmic loookup complexity. The conversion functions between the two representations "come for free" via module Map
.
let to_adjacency g = Map.to_alist g
let of_adjacency_exn l = match Map.of_alist l with
| `Ok t -> t
| `Duplicate_key c -> raise (Load_error (`Duplicate_vertex c))
let of_adjacency l =
try
`Ok (of_adjacency_exn l)
with
| Load_error err -> `Load_error err
At this point the "scaffolding" for Dijkstra's algorithm, that part of GRAPH
dealing with the representation of graphs is implemented.
The interpretation of Dijkstra's algorithm we adopt is functional : the idea is we loop over vertices relaxing their edges until all shortest paths are known. What we know on any recursive iteration of the loop is a current "state" (of the computation) and each iteration produces a new state. This next definition is the formal definition of type state
.
module Dijkstra = struct
type state = {
src : vertex_t
; g : t
; d : float Map.t
; pred : vertex_t Map.t
; s : Set.t
; v_s : (vertex_t * float) Heap.t
}
The fields of this record are:
src : vertex_t
, the source vertex;
g : t
, G the graph;
d : float Map.t
, d the shortest path weight estimates;
pre : vertex_t Map.t
, π the predecessor relation;
s : Set.t
, the set S of nodes for which the lower bound shortest path weight is known;
v_s : (vertex_t * float) Heap.t
, V - {S}, , the set of nodes of g
for which the lower bound of the shortest path weight is not yet known ordered on their estimates.
Function invocation init src g
compuates an initial state for the graph g
containing the source node src
. In the initial state, d
is everywhere ∞ except for src
which is 0. Set S (i.e. s
) and the predecessor relation π (i.e. pred
) are empty and the set V - {S} (i.e. v_s
) contains all nodes.
let init src g =
let init x = match V.equal src x with
| true -> 0.0 | false -> Float.infinity in
let d = List.fold (Map.keys g) ~init:Map.empty
~f:(fun acc x -> Map.set acc ~key:x ~data:(init x)) in
{
src
; g
; s = Set.empty
; d
; pred = Map.empty
; v_s = Heap.of_list (Map.to_alist d)
~cmp:(fun (_, e1) (_, e2) -> Float.compare e1 e2)
}
Relaxing an edge (u, v) with weight w (u, v) tests whether the shortest path to v so far can be improved by going through u and if so, updating d (v) and π (v) accordingly.
type error = [
| `Relax of vertex_t
] [@@deriving sexp]
exception Error of error [@@deriving sexp]
let relax state (u, v, w) =
let {d; pred; v_s; _} = state in
let dv = match Map.find d v with
| Some dv -> dv
| None -> raise (Error (`Relax v)) in
let du = match Map.find d u with
| Some du -> du
| None -> raise (Error (`Relax u)) in
if dv > du +. w then
let dv = du +. w in
(match Heap.find_elt v_s ~f:(fun (n, _) -> V.equal n v) with
| Some tok -> ignore (Heap.update v_s tok (v, dv))
| None -> raise (Error (`Relax v))
);
{ state with
d = Map.change d v
~f:(function
| Some _ -> Some dv
| None -> raise (Error (`Relax v))
)
; pred = Map.set (Map.remove pred v) ~key:v ~data:u
}
else state
Here, relaxation can result in a linear heap update operation. A better implementation might seek to avoid that.
One iteration of the body of the loop of Dijkstra's algorithm consists of the node in V - {S} with the least shortest path weight estimate being moved to S and its edges relaxed.
let dijkstra_exn src g =
let rec loop ({s; v_s; _} as state) =
match Heap.is_empty v_s with
| true -> state
| false ->
let u = fst (Heap.pop_exn v_s) in
loop (
List.fold (Map.find_exn g u)
~init:{ state with s = Set.add s u }
~f:(fun state (v, w) -> relax state (u, v, w))
)
in loop (init src g)
let dijkstra src g =
try
`Ok (dijkstra_exn src g)
with
| Error err -> `Error err
The shortest path estimates contained by a value of state
is given by the projection d
.
let d state = Map.to_alist (state.d)
The shortest paths themselves are easily computed as,
let path state n =
let rec loop acc x =
(match V.equal x state.src with
| true -> x :: acc
| false -> loop (x :: acc) (Map.find_exn state.pred x)
) in
loop [] n
let shortest_paths state =
List.map (Map.keys state.g) ~f:(fun n -> (n, path state n))
end
end
which completes the implementation of
Make
.
The following program produces a concrete instance of the shortest path problem (with some evaluation output from the top-level).
module G : Graph.S with
type vertex_t = char and type extern_t = (char * (char * float) list) list
=
Graph.Make (Char)
let g : G.t =
match G.of_adjacency
[ 's', ['u', 3.0; 'x', 5.0]
; 'u', ['x', 2.0; 'v', 6.0]
; 'x', ['v', 4.0; 'y', 6.0; 'u', 1.0]
; 'v', ['y', 2.0]
; 'y', ['v', 7.0]
]
with
| `Ok g -> g
| `Load_error e -> failwiths "Graph load error : %s" e G.sexp_of_load_error
;;
let s = match (G.Dijkstra.dijkstra 's' g) with
| `Ok s -> s
| `Error e -> failwiths "Error : %s" e G.Dijkstra.sexp_of_error
;; G.Dijkstra.d s
- : (char * float) list =
[('s', 0.); ('u', 3.); ('v', 9.); ('x', 5.); ('y', 11.)]
;; G.Dijkstra.shortest_paths s
- : (char * char list) list =
[('s', ['s']); ('u', ['s'; 'u']); ('v', ['s'; 'u'; 'v']); ('x', ['s'; 'x']);
('y', ['s'; 'x'; 'y'])]
References:
[1] "Introduction to Algorithms" Section 24.3:Dijkstra's algorithm -- Cormen et. al. (Second ed.) 2001.